Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 43(16): e2200115, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35338553

RESUMO

External quantum efficiency (EQE) roll-off under high current injection has been one of the major limiting factors toward the development of organic semiconductor laser diodes (OSLDs). While significant progress in this regard has been made on organic semiconductors (OSCs) emitting in the blue-green region of the visible spectrum, OSCs with longer wavelength emission (>600 nm) have fallen behind in both material development and the advancement in device architectures suitable for the realization of OSLDs. Therefore, to make simultaneous incremental advancements, a host-guest system comprising of a high performing poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) polymer and an efficient small molecule laser dye, dithiophenyl diketopyrrolopyrrole (DT-DPP), is used. This combination provides an extremely low amplified spontaneous emission threshold of 4.2 µJ cm-2 at an emission wavelength of 620 nm. The solution-processed organic light-emitting diodes (OLEDs) fabricated using this system exhibit a high external quantum efficiency (EQE) of 2.6% with low efficiency roll-off and high current injection up to 90 A cm-2 to yield ultrahigh luminance of over 1.5 million cd m-2 .

2.
Dalton Trans ; 50(21): 7400-7408, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33969860

RESUMO

A visible light absorbing [RuII(tpy)2]2+-type chromophore appended with a dipicolinic acid LnIII chelator has been prepared and complexed with several differing lanthanide cations to form the corresponding heterobimetallic d-f assemblies. The subseqent solution speciation analysed by 1H NMR spectroscopy revealed an unexpected decrease in the LnIII chelate complex stability, in particular for the 1 : 3 complex, when compared to the parent dipicolinic acid. As a result, the desired Ln(ML)3 complexes could not be isolated, and the 1 : 1 LnIII-ML complexes were instead characterised and investigated using steady state absorption and emission spectroscopy. Sensitised NIR emission from the YbIII, NdIII and ErIII complexes was observed upon 1MLCT excitation of the RuII based metalloligand in the visible region at ca. 485 nm. Investigations using transient absorption spectroscopy revealed essentially quantitative intersystem crossing to form the 3MLCT excited state, as expected, which then acts as the energy donor for the metalloligand based antennae effect, facilitating sensitisation efficiencies of 4.8, 17.0 and 37.4% respectively for the YbIII, ErIII and NdIII cations.


Assuntos
Luminescência , Ácidos Picolínicos , Complexos de Coordenação , Espectroscopia de Ressonância Magnética
3.
Nat Commun ; 11(1): 5623, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159048

RESUMO

Triplet excitons have been identified as the major obstacle to the realisation of organic laser diodes, as accumulation of triplet excitons leads to significant losses under continuous wave (CW) operation and/or electrical excitation. Here, we report the design and synthesis of a solid-state organic triplet quencher, as well as in-depth studies of its dispersion into a solution processable bis-stilbene-based laser dye. By blending the laser dye with 20 wt% of the quencher, negligible effects on the ASE thresholds, but a complete suppression of singlet-triplet annihilation (STA) and a 20-fold increase in excited-state photostability of the laser dye under CW excitation, were achieved. We used small-area OLEDs (0.2 mm2) to demonstrate efficient STA suppression by the quencher in the nanosecond range, supported by simulations to provide insights into the observed STA quenching under electrical excitation. The results demonstrate excellent triplet quenching ability under both optical and electrical excitations in the nanosecond range, coupled with excellent solution processability.

4.
Inorg Chem ; 59(22): 16194-16204, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33121245

RESUMO

Enhanced near-infrared (NIR) luminescence from two structurally related heterobinuclear NaIYbIII eight-cooridnate and heterobinuclear YbIIINaI eight-coordinate (CN = 8) complexes is reported and compared to a nine-coordinate (CN = 9) homoleptic complex. For the heteroleptic complex, [Yb(MPQ2)(acac)], the YbIII cation is coordinated to two tridentate 2-(5-methylpyridin-2-yl)-8-quinolinate (MPQ) anions, with a bidentate acetylacetonate (acac) anion completing the coordination sphere. Instead, the heterobinuclear [NaYb(MPQ)4] complex comprises a total of four anionic MPQ ligands, two of which exhibit κ3-coordination to the YbIII cation. The remaining two MPQ anions are unidentate toward the lanthanide and form µ2-bridges via the deprotonated quinolinate oxygens to a bound NaI cation which is also coordinated to the remaining nitrogen donor atoms. The structural properties of these complexes were evaluated by single-crystal X-ray diffraction (SXRD), continuous shape measure (CShM) analysis, and 1H NMR spectroscopy using a diamagnetic LuIII analogue. The corresponding photophysical properties were examined in CH2Cl2 solution by using absorption and emission spectroscopy. For both the complexes, characteristic YbIII emission is observed at ca. 980 nm, with recorded photoluminescence quantum yields (Φobs) and NIR luminescence lifetimes (τobs) of 2.0% and 14.0 µs vs 1.5% and 11.6 µs for the [NaYb(MPQ)4] and [Yb(MPQ)2(acac)] complexes, respectively. Interestingly, the eight-coordinate YbIII complexes both have higher photoluminescence quantum yields when compared to the homoleptic [Yb(MPQ)3] complex, which has a reported quantum yield of 1.0% and a NIR lifetime determined herein of 13.3 µs under identical conditions. These results have been rationalized by considering the overall efficiency of the ligand-centered sensitization process (ηsens = Φisc × Φeet), together with subsequent radiative (kr) and nonradiative (knr) deactivation of the YbIII cation. Moreover, the efficiency of the intersystem crossing (Φisc) and electronic energy transfer (Φeet) processes involved in the antennae effect have been quantified for the new complexes using a combination of nanosecond and femtosecond transient absorption techniques and have been compared to our previous results using [Ln(MPQ)3] complexes with Ln = Yb and Lu.

5.
Angew Chem Int Ed Engl ; 59(24): 9522-9526, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32133715

RESUMO

The development of photocatalytic reactions has provided many novel opportunities to expand the scope of synthetic organic chemistry. In parallel with progress towards uncovering new reactivity, there is consensus that efforts focused on providing detailed mechanistic insight in order to uncover underlying excited-state reactions are essential to maximise formation of desired products. With this in mind, we have investigated the recently reported sensitization-initiated electron transfer (SenI-ET) reaction for the C-H arylation of activated aryl halides. Using a variety of techniques, and in particular nanosecond transient absorption spectroscopy, we are able to distinguish several characteristic signals from the excited-state species involved in the reaction, and subsequent kinetic analysis under various conditions has facilitated a detailed insight into the likely reaction mechanism.

6.
J Am Chem Soc ; 141(28): 11071-11081, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31268312

RESUMO

A series of highly luminescent europium(III) complexes which exhibit photoluminescence from the Eu(III) center following energy transfer from the UV absorbing organic sensitizer have been investigated using a combination of ultrafast optical transient absorption and Eu L3 X-ray transient absorption techniques. We have previously demonstrated that the latter can be used as a signature of 4f-4f excitation responsible for the photoluminescence in these Eu(III) coordination complexes, but the long time scale of the earlier measurements did not allow direct observation of the ligand-to-metal energy transfer step, preventing a determination of the sensitization mechanism. Here, we provide the first direct experimental verification that Dexter electron exchange from the ligand triplet state is the dominant energy transfer mechanism in these photoluminescent systems. Moreover, the optical transient absorption results obtained herein imply that energy transfer for all three compounds has near unity yield, regardless of differences in the sensitization efficiencies, suggesting that the variations in the sensitization efficiencies are determined almost entirely by differences in the ligand-centered intersystem crossing rates. The implications for the rational design of more effective photoluminescent lanthanide complexes are discussed.


Assuntos
Complexos de Coordenação/química , Európio/química , Substâncias Luminescentes/química , Transferência de Energia , Ligantes , Espectrofotometria Ultravioleta , Espectroscopia por Absorção de Raios X
7.
Chemistry ; 25(17): 4509-4519, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664298

RESUMO

The hetero-Pacman architecture places two different metal coordination sites in close proximity, which can support efficient energy and/or electron transfer and allow for cooperative activation of small molecules. Here, the synthesis of dyads consisting of a porphyrin unit as photosensitizer and a rhenium unit as catalytically active site, which are held together by the rigid xanthene backbone, is presented. Mononuclear [(NN)Re(CO)3 (Cl)] complexes for CO2 reduction in which NN represents a bidentate diimine ligand (e.g., bipyridine or phenanthroline) lack light absorption in the visible region, resulting in poor photocatalysis upon illumination with visible light. To improve their visible-light absorption, we have focused on the incorporation of a strongly absorbing free base or zinc porphyrin unit. Resulting photocatalytic experiments showed a strong dependence of the catalytic performance on both the type of photosensitizer and the excitation wavelengths. Most notably, the intramolecular hetero-Pacman system containing a zinc porphyrin unit showed much better catalytic activity in the visible region (excitation wavelengths >450 nm) than the free base porphyrin version or the corresponding mononuclear rhenium compound or an intermolecular system comprised of a 1:1 mixture of the mononuclear analogues.

8.
Dalton Trans ; 48(6): 2142-2149, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30667429

RESUMO

Cyclometallated Pt(ii) complexes with arylpolypyridyl ligands have impressive photophysical properties (high quantum yields, long lifetimes and tuneable emission) which can be readily tuned by modification of the organic ligand. Despite this, few examples of cyclometallated Pt(ii) complexes as sensitisers for Ln(iii) emission have been reported. Herein, we report the photophysical properties for a series of bimetallic complexes incorporating an N^C^N-coordinated Pt(ii) bearing an alkynyl terpyridine as a metalloligand for a Ln(iii) ion (where Ln = Nd, Gd, Er, Yb and Lu). Using a combination of steady state, time-resolved, and transient absorption experiments, the influence on the photophysical properties of the metalloligand exerted by the different Ln(iii) cations has been investigated, together with the energy transfer efficiency from the metalloligand to the Ln(iii) 4f* excited state.

9.
Inorg Chem ; 57(22): 14062-14072, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30403139

RESUMO

A series of isostructural lanthanide complexes [Ln(MPQ)3] (Ln = Nd, Gd, Er, Yb, Lu) using a monoanionic tridentate methylpyridyl-substituted 8-hydroxyquinoline ligand (MPHQ = 2-(5-methylpyridin-2-yl)-8-hydroxyquinoline) have been prepared and characterized using elemental analysis (CHN), single-crystal X-ray diffraction (XRD), and 1H NMR spectroscopy. This ligand forms homoleptic charge-neutral lanthanide complexes with three coordinated ligands arranged in an "up-up-down" fashion around the metal center. The photophysical properties of the Nd, Er, and Yb complexes were investigated using absorption and emission spectroscopy, with the latter species displaying efficient sensitization in the Near Infra-Red (NIR) region and a photoluminescence quantum yield (PLQY) as high as 1.0% in CH2Cl2 solution. The intersystem crossing and energy-transfer processes involved in the antenna effect were further investigated using transient absorption techniques, which revealed essentially quantitative sensitization efficiencies for the NIR-emitting cations.

10.
Environ Sci Technol ; 52(18): 10426-10432, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30137970

RESUMO

In sunlit waters, the fate of fluoroquinolone antibiotics is significantly impacted by photodegradation. The mechanism of how natural organic matter (NOM) participates in the reaction has been frequently studied but still remains unclear. In this work, the interactions between the excited triplet state of the fluoroquinolone antibiotic norfloxacin (3NOR*) and a variety of NOM extracts were investigated using time-resolved laser spectroscopy. The observed transient absorption spectrum of 3NOR* showed a maximum at ca. 600 nm, and global fitting gave a lifetime of 1.0 µs for 3NOR* in phosphate buffer at pH = 7.5. Quenching of 3NOR* by Suwannee River hydrophobic acids (HPO), Beaufort River HPO, and Gartempe River HPO yielded rate constants of 1.8, 2.6, and 4.5 (×107 molC-1 s-1) respectively, whereas HPO from South Platte River unexpectedly increased the lifetime of 3NOR* with an as yet unknown mechanism. Concurrent photodegradation experiments of NOR (5 µM) in the presence of these NOM were also performed using a sunlight simulator. In general, the effects of NOM on the photodegradation rate of NOR were in agreement with observations from transient absorption studies. We suggest that adsorption of NOR to NOM is one of the major factors contributing to the observed quenching. These results yield a new insight into the likely role of NOM in sunlight-induced degradation of micropollutants.


Assuntos
Norfloxacino , Rios , Fotólise , Análise Espectral , Luz Solar
11.
Inorg Chem ; 57(14): 8476-8486, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29969245

RESUMO

We have designed linear metalloligands which contain a central photoactive [Ru(N∧N)3]2+ unit bordered by peripheral metal binding sites. The combination of these metalloligands with Zn(II) and Fe(II) ions leads to heterometallic tetrahedral cages, which were studied by NMR spectroscopy, mass spectrometry, and photophysical methods. Like the parent metalloligands, the cages remain emissive in solution. This approach allows direct incorporation of the favorable properties of ruthenium(II) polypyridyl complexes into larger self-assembled structures.

12.
Dalton Trans ; 47(24): 7956-7964, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29855648

RESUMO

An isomorphous series of lanthanoid complexes containing tribenzoylmethanide (tbm) and 1,10-phenanthroline (phen) ligands has been synthesised and structurally characterised. These complexes, formulated as [Ln(phen)(tbm)3] (Ln = Eu3+, Er3+ and Yb3+), were compared with analogous dibenzoylmethanide (dbm) [Ln(phen)(dbm)3] complexes to investigate the effect of changing ß-diketonate to ß-triketonate ligands on the photophysical properties of the complex. The photophysical properties for the Eu3+ complexes were similar for both systems, whereas a modest enhancement was observed for Yb3+ and Er3+ moving from the dbm to the tbm complexes. A detailed study of the NIR photophysical properties was achieved by adapting the integrating sphere method for the calculation of overall quantum yields in the solid state.

13.
Dalton Trans ; 46(36): 12177-12184, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28871301

RESUMO

This paper presents the synthesis of a tripodal ligand (H3L) via the Schiff base condensation of N,N-diethylsalicylaldehyde and tris(2-aminoethyl)amine. The neutral complexes of type [EuL], [GdL] and [DyL] were synthesized and characterized by FT-IR, SEM-EDS, PXRD, single crystal X-ray diffraction, CHN analysis and high resolution ESI-MS. X-ray crystallographic studies demonstrated that the heptadentate ligand incorporating a cavity pre-organized by hydrogen bonding binds the Ln(iii) ions to yield a face capped octahedral coordination geometry with three-fold symmetry. Photoluminescence studies show a typical Ln(iii) absorption character for the three complexes, with [EuL] demonstrating considerably stronger lanthanide-based luminescence peaks, and a Eu(iii) centered luminescence lifetime of 0.144 ± 0.01 ms. Temperature/field-dependent DC and temperature/frequency-dependent AC magnetic measurements carried out for the Dy(iii) complex indicated obvious magnetic anisotropy and suggested slow relaxation behaviour with considerable quantum tunnelling of the magnetization contribution.

14.
Inorg Chem ; 56(15): 8975-8985, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28696105

RESUMO

The reaction of the ß-triketonate ligands tris(4-methylbenzoyl)methanide and tribenzoylmethanide with the trivalent lanthanoids Eu3+, Er3+, and Yb3+ in the presence of Cs+ afforded polymeric structures where the repeating units are represented by bimetallic tetranuclear assemblies of formulation {[Ln(Cs)(ß-triketonate)4]2}n. The only exception is the structure formed by the reaction of tris(4-methylbenzoyl)methanide, Yb3+, and Cs+, which yielded a polymeric assembly where the repeating units are mononuclear Yb3+ complexes bridged by Cs+ cations. Photophysical measurements on the obtained materials confirmed efficient sensitization from the ligand excited states to the 4f* excited states of the three lanthanoids. According to transient absorption data, Er3+ and Yb3+ are sensitized via energy transfer from the triplet state of the ß-triketonate ligands. On the other hand, energy transfer to Eu3+ seems to occur via an alternative pathway, possibly directly via the singlet state or through ligand to metal charge transfer states. The emission measurements confirm efficient sensitization for all three lanthanoids and bright near-infrared emission for Er3+ and Yb3+, a characteristic that seems to be linked to the specific chemical structure of the ß-triketonate ligands.

15.
Inorg Chem ; 55(24): 12737-12751, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989210

RESUMO

A series of enantiopure ruthenium(II) polypyridyl complexes are reported that feature pendant pyridyl groups suitable for building larger self-assembled structures. The complexes are characterized in detail in solution using NMR spectroscopy, cyclic voltammetry, and photophysical methods and in the solid state using single-crystal X-ray crystallography. The complexes are luminescent, displaying long excited-state lifetimes that are quenched when the pendant pyridyl groups are protonated. Reaction with cadmium(II) ions results in the formation of a mixed-metal one-dimensional coordination polymer, which was characterized by single-crystal X-ray crystallography.

16.
Chemistry ; 22(45): 16178-16186, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27667495

RESUMO

An asymmetric 'Pacman' metalloligand, [Zn(PXT)], which features a cofacial ZnII -porphyrin unit (P) covalently attached to a terpyridine (T) chelating group via a rigid xanthene (X) moiety has been prepared, and its interactions with several different trivalent LnIII cations (NdIII , GdIII , YbIII and LuIII ) have been examined. The formation of 1:1 metal-ligand complexes was monitored by 1 H NMR spectroscopy and corroborated by HRMS data. Solution-stability constants were determined by UV/Vis titration, and the resulting complexes with NdIII or YbIII demonstrated sensitised emission in the NIR region due to energy transfer from the ZnII -porphyrin donor to LnIII acceptor. The energy transfer was investigated by transient absorption techniques, which provided insight into the kinetics and efficiency of the antenna effect.

17.
Dalton Trans ; 45(30): 12200-5, 2016 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-27411484

RESUMO

A series of lanthanide-based coordination polymers {[Yb1-xErx(4,4'-bpdo)3(H2O)2](CF3SO3)3}∞ were synthesised by solvent diffusion techniques, where 4,4'-bpdo = 4,4'-bipyridine-N,N'-dioxide, and using differing mole fractions of Yb(iii) and Er(iii) which were systematically varied (x = 0, 0.05, 0.20, 0.50 and 1). All of the materials obtained were characterised using elemental analyses, single-crystal X-ray diffraction (SXRD) and solid-state photoluminescence studies. Structurally, the coordination polymers crystallise as an isomorphous series of infinite 2D sheets, which contain two inner sphere water molecules, and are isostructural with a previously characterised homometallic Yb(iii) compound. In addition to the normal Near Infra-Red (NIR) luminescence, these compounds also demonstrate upconversion emission upon 980 nm excitation. Upconversion luminescence measurements reveal visible emission in the red, green, and blue regions corresponding to the (2)H11/2→(4)I15/2, (4)F9/2→(4)I15/2 and (2)H9/2→(4)I15/2 transitions of the Er(iii) cation upon two and three-photon excitation. We also observed weak emission from the Er(iii) cation in the UV region for the first time in a Ln-MOF based material.

18.
Photochem Photobiol Sci ; 15(8): 995-1005, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27387268

RESUMO

A system demonstrating Nitric Oxide (NO) activated Triplet-Triplet Annihilation (TTA) upconversion has been devised, based on a substituted [Ru(II)(bpy)3](PF6)2 complex (bpy = 2,2'-dipyridine) bearing a single 1,2-diaminophenyl moiety as an NO activatable triplet photosensitizer (Ru-1), and 9,10-diphenylanthracene (DPA) as a triplet acceptor/emitter. The excited triplet state of Ru-1 is significantly quenched (ΦT∼ 22%) by a Photoinduced Electron Transfer (PET) reaction, as confirmed by steady state phosphorescence and transient absorption spectroscopy, and hence Ru-1 does not function as a TTA upconversion sensitizer. However, in the presence of NO/O2, the 1,2-diaminophenyl group of Ru-1 is transformed into a benzotriazole. This inhibits PET, and the triplet state quantum yield is increased to ca. 85%, switching on the TTA upconversion process which increases by 10-fold. These processes were studied using a combination of steady state and time-resolved luminescence together with transient absorption spectroscopy on the nanosecond and femtosecond timescales. The energy level of the charge transfer state (CTS) for Ru-1 was also obtained electrochemically, supporting the PET mechanism of triplet state quenching and hence the lack of TTA upconversion with Ru-1.


Assuntos
Complexos de Coordenação/química , Óxido Nítrico/química , Fármacos Fotossensibilizantes/química , Rutênio/química , Antracenos/química , Técnicas Eletroquímicas , Transporte de Elétrons , Lasers de Estado Sólido , Oxigênio/química , Fotólise/efeitos da radiação , Teoria Quântica , Espectrometria de Fluorescência , Temperatura , Termodinâmica , Fatores de Tempo
19.
Food Chem ; 196: 1163-71, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26593603

RESUMO

Verdelho is a white-grape-vine, growing well in the Granite Belt region of Queensland. Despite its traditional use in Madeira wine production, there is scant literature on the flavour characteristics of this variety as a dry wine. In this work, for the first time, volatile compounds of Verdelho wines from the Granite Belt have been isolated by solid phase extraction (SPE), and analysed using gas chromatography-mass spectrometry (GC-MS). A corresponding sensory characterisation of this distinctive wine style has also been investigated, using sensory descriptive analysis. Chemical compounds that mostly contribute to the flavour of these wines were related to fruity sweet notes (ethyl esters and acetates), grassy notes (3-hexenol), floral aromas (2-phenylethanol and ß-linalool) and cheesy aromas (fatty acids). Sensory analysis confirmed that the Verdelho wines were characterised by fruity aroma attributes, especially "tree-fruit" and "rockmelon", together with "herbaceous", while significant differences in the other attributes were found.


Assuntos
Odorantes/análise , Vinho/análise , Cromatografia Gasosa-Espectrometria de Massas , Queensland , Extração em Fase Sólida
20.
Chemistry ; 21(50): 18354-63, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26511032

RESUMO

The reaction of hydrated lanthanoid chlorides with tribenzoylmethane and an alkali metal hydroxide consistently resulted in the crystallization of neutral tetranuclear assemblies with the general formula [Ln(Ae⋅HOEt)(L)4 ]2 (Ln=Eu(3+) , Er(3+) , Yb(3+) ; Ae=Na(+) , K(+) , Rb(+) ). Analysis of the crystal structures of these species revealed a coordination geometry that varied from a slightly distorted square antiprism to a slightly distorted triangular dodecahedron, with the specific geometrical shape being dependent on the degree of lattice solvation and identity of the alkali metal. The near-infrared (NIR)-emitting assemblies of Yb(3+) and Er(3+) showed remarkably efficient emission, characterized by significantly longer excited-state lifetimes (τobs ≈37-47 µs for Yb(3+) and τobs ≈4-6 µs for Er(3+) ) when compared with the broader family of lanthanoid ß-diketonate species, even in the case of perfluorination of the ligands. The Eu(3+) assemblies show bright red emission and a luminescence performance (τobs ≈0.5 ms, ${{\Phi}{{{\rm L}\hfill \atop {\rm Ln}\hfill}}}$≈35-37 %, ηsens ≈68-70 %) more akin to the ß-diketonate species. The results highlight that the ß-triketonate ligand offers a tunable and facile system for the preparation of efficient NIR emitters without the need for more complicated perfluorination or deuteration synthetic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...